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ABSTRACT: There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of
glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and
diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg
ha−1) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR
soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the
greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6
WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and
12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of
glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of
glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There
was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in
the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed
management in the field. Furthermore, the field studies confirm the results of greenhouse studies.
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■ INTRODUCTION
Glyphosate (N-(phosphonomethyl)glycine) is the most widely
used herbicide in the world, due mainly to its extensive use with
glyphosate-resistant (GR) crops.1,2 Glyphosate is a divalent
metal cation chelator,3,4 although not a strong one compared to
certain synthetic and natural metal ion chelators.5−7 In
glyphosate-sensitive plants, glyphosate does affect mineral
nutrition of the plant. For example, Eker et al.8 found that
glyphosate reduced uptake and translocation of Mn and Fe in
non-GR sunflower. Whether such effects are due to chelation
effects or are due to secondary effects from the phytotoxicity is
unknown. However, the almost 50-fold level of resistance of
GR crops9 indicates that if there is a significant effect on
mineral nutrition on non-GR plants, it is a secondary effect of
glyphosate’s phytotoxicity.
Nevertheless, published data on the effects of glyphosate on

mineral nutrition of GR crops are contradictory. Three groups
have claimed adverse effects on mineral nutrition in GR crops
in peer-reviewed journals: Zobiole et al.,10−16 Bellaloui et al.,17

and Bott et al.18 All but one16 of the Zobiole et al. studies and
the Bott et al. study were conducted in a greenhouse or growth
chamber. Eight other research groups have found no effect of
glyphosate on mineral nutrition of GR crops, mostly in the
field.19−27 Published data on the mineral content of GR crops
do not address the question of whether glyphosate has an
effect, as these papers do not compare glyphosate-sprayed
plants with a no glyphosate control.28−34 However, the
published mineral contents are within the normal ranges for
these crops. Others have tried to connect the reported effects of

glyphosate on the mineral content of GR crops to the greater
susceptibility of these crops to plant disease.35−37

The objective of the experiments described in this paper was
to determine whether glyphosate applied at field rates has an
effect on the mineral content of young and mature leaves, as
well as in seeds produced by GR soybeans in both the
greenhouse and field. This is the first study on this topic to use
high resolution inductively coupled plasma mass spectrometry
(ICP-MS) to examine glyphosate effects on the content of
almost all metals in a GR crop. Other analytical techniques
commonly employed to measure elemental content of plant
tissues include atomic absorption spectrometry (AAS) and
inductively coupled plasma-atomic emission spectrometry
(ICP-AES). Unlike the former, ICP-MS is considered a
multielement technique which dramatically increases sample
throughput. ICP-MS also generally has lower detection limits
than both AAS and ICP-AES, and is capable of measuring
isotope ratios. There are two types of mass analyzers commonly
employed in ICP-MS: the quadrupole, by far the most
common, and the sector field. Whereas each has its advantages
and limitations, sector field instruments allow for high
resolution measurements, which were used in this study for
select elements to eliminate certain isobaric interferences.
Moreover, sector field instruments generally have lower
backgrounds and higher sensitivity and thus lower limits of
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detection. All mineral elements of interest were measured in
our study. We found no effects on any of the metal contents in
leaves or harvested seed.

■ MATERIALS AND METHODS
Greenhouse Experiment. A greenhouse experiment was

conducted during November, 2010−January, 2011 at the USDA-
ARS Crop Production Systems Research Unit, Stoneville, MS.
Glyphosate-resistant soybean (Glycine max) cultivar (Asgrow
4605RR/S) was grown in 20-cm diameter plastic pots containing
Bosket sandy loam soil (fine-loamy, mixed, thermic Mollic Hapludalfs;
pH 8.2, 0.5% organic matter, cation exchange capacity = 16.7 meq 100
g−1, 51.3% sand, 37.1% silt, and 11.6% clay). The greenhouse was
maintained at 28/22 ± 3 °C day/night temperature with natural light
supplemented by sodium vapor lamps to provide a 13-h photoperiod.
Soybeans were seeded and thinned to one uniform plant per pot after
emergence and subirrigated with distilled water as needed. Plants were
supplied with nitrogen (urea, 46% N, 2.6 g/L, 100 mL/pot) at 4, 6,
and 8 weeks after planting (WAP). Soybean plants at the two-
trifoliolate leaf (3 WAP) stage were used for glyphosate treatment.
Treatments were (1) glyphosate at 0.86 kg ae/ha applied at 3 WAP;
(2) glyphosate at 0.86 and 0.86 kg ae/ha applied at 3 and 6 WAP; and
(3) no glyphosate control. Treatments were replicated eight times.
Spray solutions, prepared using a commercial formulation of the
potassium salt of glyphosate (Roundup WeatherMax, Monsanto
Agricultural Co., St. Louis, MO), were applied using an indoor spray
chamber equipped with 8002E flat-fan nozzles and pressurized at 140
kPa to deliver 190 L/ha. Young and old leaflets were sampled at 6
(prior to second application of glyphosate), 9, and 12 WAP. At 6
WAP, the young leaves were leaf 6 at node 7, and old leaves were
trifoliate leaf 2 at node 3; at 9 WAP, young leaves were trifoliate leaves
6 and 7 at nodes 7 and 8, and old leaves were trifoliate leaves 2 and
three at nodes three and four; at 12 WAP, new leaves were trifoliate
leaves 10 and 11 at nodes 11 and 12, and old leaves were trifoliate
leaves 3 and 4 at nodes 4 an 5. At 12 WAP, soybean seeds
(physiological maturity) were also collected. Leaf and seed samples
were stored in sealed plastic bags and stored at 4 °C and room
temperature, respectively.
Field Experiment. A field study was conducted in 2011 at the

USDA-ARS Crop Production Systems Research farm, Stoneville,
Mississippi, under an irrigated environment. The soil was a Dundee silt
loam (fine-silty, mixed, active, thermic Typic Endoqualf) with pH 6.7,
1.1% organic carbon, a cation exchange capacity of 15 meq 100 g−1

with soil textural fractions of 26% sand, 55% silt, and 19% clay. At
planting, soil samples from the top 15-cm depth were collected by
taking four random cores (7.5-cm diameter) in both no glyphosate and
glyphosate plots. The samples were analyzed by the private soil testing
laboratory, Waters Agricultural Laboratories, Inc. Camilla, Georgia.
The Mehlich 1 double acid extraction method,38 followed by
inductively coupled argon plasma emission spectrophotometry was
used for mineral determinations.
The experimental area was under glufosinate-resistant soybean

production for two years prior to this study. Seedbed preparation
consisted of disking, subsoiling, disking, and bedding in the fall of the
previous year. Prior to planting, the raised beds were smoothed as
needed. GR soybean (Asgrow 4605RR/S) was planted in 102-cm wide
rows using a MaxEmerge 2 planter (Deere and Co., Moline, IL) at
350,000 seeds/ha on May 6, 2011. S-Metolachlor at 1.12 kg ai/ha plus
pendimethalin at 1.12 kg ai/ha plus paraquat at 1.12 kg ai/ha were
applied to the entire experimental area immediately after planting.
Paraquat was applied to kill existing weeds at planting, and S-
metolachlor and pendimethalin were used to provide early season
weed control. Treatments were (1) glyphosate at 0.86 and 0.86 kg ae/
ha applied at 3 and 6 WAP and (2) no glyphosate control. The
commercial formulation of potassium salt of glyphosate (Roundup
WeatherMax, Monsanto Agricultural Co., St. Louis, MO) was used.
Herbicides were applied with a tractor-mounted sprayer with TeeJet
8004 standard flat spray nozzles (TeeJet Spraying Systems Co.,
Wheaton, IL), delivering 187 L/ha water at 179 kPa. All plots

including glyphosate-treated ones were hand weeded periodically
throughout the season to keep them weed-free. No fertilizer nitrogen
was applied, and the crop was irrigated on an as-needed basis. The
experiment was conducted in a randomized complete block design
with eight replications. Each treatment plot consisted of four 15.2-m
long rows spaced 102-cm apart.

Young and old leaflets were sampled at 9 and 12 WAP. At 9 WAP,
young leaves were trifoliate leaves 6 and 7 at nodes 7 and 8, and old
leaves were trifoliate leaves 2 and 3 at nodes 3 and 4; at 12 WAP, new
leaves were trifoliate leaves 10 and 11 at nodes 11 and 12, and old
leaves were trifoliate leaves 3 and 4 at nodes 4 and 5. At harvest, about
200 soybean pods were randomly sampled from the middle two rows
for seed chemical analysis. Soybean from all four rows in each plot was
harvested using a combine, and grain yield was adjusted to 13%
moisture. Samples were stored as described above.

Sample Preparation for Mineral Analyses. Leaves were
removed from storage and dried at 60 °C for ∼24 h to constant
weight prior to digestion. The mean moisture content of the leaves
before drying was 73.1% ± 3.3% (1 SD). Soybeans were digested
without drying. The mean moisture content of the beans, determined
on separate portions, was 7.1% ± 0.9% (1 SD). Between 0.1 and 0.3 g
of each sample was digested with 5 mL of HNO3, 1 mL of H2O2, and
50 μL of HF using a microwave digestion system (Ethos; Milestone
Inc.) equipped with a multiprep rotor (42 vessels). All reagents were
high purity grade from SeaStar Chemicals Inc. As noted earlier, there
were eight replicates (plants) per treatment. From each of these plants,
three leaves were collected and analyzed together as a single sample.
Beans from each plant were analyzed in duplicate, using 3 or 4 seeds
per digest, and the average of the two analyses was used for each plant.
The relative percent difference between the beans from a single plant
was generally less than 10%. In addition, each digestion batch included
three method blanks to monitor contamination, and three samples of
NIST SRM 1547 (peach leaves) reference material to monitor
accuracy. The microwave was operated at 1200 W, and the
temperature program consisted of a 30 min ramp to 120 °C, followed
by a 60 min ramp to 180 °C, after which the temperature was held for
an additional 20 min. The resulting clear digests were diluted to 50 mL
with deionized (DI) water (≥18.2 MΩ). Before analysis, 3 mL of each
sample was further diluted to 10 mL with DI water, yielding a final
solution of approximately 3% HNO3 and 0.03% HF.
ICP-MS Analysis. ICP-MS measurements were made using a

sector field mass spectrometer (Element-XR; Thermo-Fisher). The
Element XR allows for three resolution settings: m/Δm ≈ 400 (low
resolution), m/Δm ≈ 4000 (medium resolution) and m/Δm ≈ 10000
(high resolution). Medium and high resolutions are used to separate
certain polyatomic interferences with the elements of interest. The
sample introduction system consisted of a glass concentric nebulizer
outfitted with a glass cyclonic spray chamber. Before the samples were
analyzed, the system was optimized for sensitivity, stability, and oxide
levels. The following was achieved for 1 ng g−1 115In in low resolution
mode: ∼1 million counts per second; <2% RSD (short-term); and
<5% oxides. For those isotopes measured under medium and high
resolutions, mass offset was determined prior to the analysis in order
to center the peak in the mass window. Instrumental and data
acquisition parameters are given in Table 1.

For quantitation of the leaves, external calibration was used with a
reagent blank and five standards ranging from 0.1 ng g−1 to 20 ng g−1.
For seeds, we employed the method of standard additions because we
expected a somewhat more complex matrix. Spikes ranged from 0.1 ng
g−1 to 50 ng g−1. Standards were prepared in 3% HNO3 using a
multielement standard solution (Spex Certiprep). Linearity (r2 value)
for the calibration plots for all isotopes was >0.999. Internal
standardization was performed online using a 2 ng g−1 solution of Y
and Sc. Y was used for elements in low and high resolutions and Sc for
elements in medium resolution. Recoveries for the reference material
for the leaf analyses generally ranged from 80 to 120%, except for Ca
and K where the recovery was low (56% and 42%, respectively).
However, the low recovery of Ca and K was consistent so that the
relative values are valid, although the absolute values are low.
Concentrations of elements were above their corresponding method
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detection limit except for Se in leaves. Because Se levels in the leaves
were near or below the MDL (∼ 0.7 μg/g), those data are not
reported. The Se results for the seeds are reported because the levels
exceeded the MDL, which was found to be lower for seeds (∼0.04 μg/
g). Future work will investigate ways of lowering the MDL for leaf
analysis to allow examination of the behavior of trace levels of Se in
GR soybean leaves.
Sample data are reported on a dry-weight basis (for leaves) and wet-

weight (fresh) basis for the seeds; mean moisture content for both are
reported above. The data reported in the figures represent the averages
with standard deviations of eight measurements (representing eight
plants) for the leaves. For seeds, the data are averages with standard
errors of eight means (representing eight plants) of two samples of
three or four beans each per plant.
Statistical Analyses. Data from the greenhouse study were

subjected to analysis of variance using SAS PROC GLM (SAS
Institute, Cary, North Carolina), and treatment means were separated
at the 5% level of significance using Fisher’s Protected LSD test. Data
from the field study were subjected to Student’s t-test using Microsoft
Excel (Microsoft), and means were separated at the 5% level of
significance.

■ RESULTS
Soil Analyses. No significant differences, except for As,

were found in mineral content or other characteristics of the
soil samples that were used for glyphosate treatments versus
control plots (Table 2).
Greenhouse Studies. Statistically, there were no effects of

either one or two applications of glyphosate on Ca, Mg, Mn,
Zn, Fe, Cu, or Ni content on young or old leaves sampled at 6,
9, and 12 WAP (Figure 1), except for a reduction of Ni in
young leaves 12 WAP with one treatment and an increase in Cu
in young leaves at 9 WAP with two treatments. Not shown are
no effect results on Sr, Ba, Al, Cd, Cr, and Co, minerals less
associated with requirements for plant biochemical processes.
No effects of either treatment were seen on Mg, Ca, Sr, Ba, Mn,
Fe, Ni, Cu, Zn, Al, Cd, Cr, Co, or Se in harvested seeds of
greenhouse-grown plants, except for a decrease in Sr and an
increase in Ni with two treatments (Figure 2).
Field Studies. There were no effects of two applications (at

3 and 6 WAP) of a recommended rate (0.86 kg ha−1) of
glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, or Ni content of young
or old leaves at either 9 or 12 WAP, except for a decrease in Mn
in young leaves at 12 WAP and an increase in Zn in old leaves
at 9 WAP (Figure 3). The content of some metals changed with
leaf age. For example, Ni was higher in younger than older

leaves, especially at 9 WAP. Conversely, Fe was higher in older
leaves. Not shown are no effect results on Sr, Ba, Al, Cd, Cr,
and Co, minerals less associated with requirements for plant
biochemical processes. Furthermore, there were no effects on
Mg, Ca, K, Sr, Ba, Mn, Fe, Ni, Cu, Zn, Cd, Cr, Co, or Se
content of harvested seed of glyphosate-treated, field-grown
plants (Figure 4). There was no difference in yield between
control and glyphosate-treated GR soybean (Table 3).

■ DISCUSSION
In the greenhouse, there were few effects on any minerals in
leaves with either treatment, and few effects were seen on any
minerals of harvested seeds. Similarly, few effects of two
applications of glyphosate at recommended doses were
measured on the mineral content of young or old leaves at
two time points after the last treatment in the field. Two
glyphosate treatments had no effect on the content of any
minerals of harvested seeds or on yield. The statistically
significant effects appeared random, with on only one instance
of an effect for any one metal and both increases and decreases
in these six metals (Mn, Zn, Ni, Sr, Cu, and Ca). There were
120 treatment means analyzed in this study at the 95%
confidence level, so one might expect a 5% false positive rate
(six). Exactly 6 of 120 treatment means were found to be
statistically significant. The randomness (six minerals, increases
and decreases, and different tisues) of these six “significant”
means suggests that they are false negatives and positives.
Our results are in general agreement with the eight groups

who have found no effect of glyphosate treatment on mineral
content of GR crops19−27 and in disagreement with the three
groups who have reported deficiencies caused by glyphosate in
one or more minerals in similar experiments.10−18 Only two of

Table 1. ICP-MS Instrumental Settings

plasma

cool gas flow 16 L min−1

aux. gas flow 0.9 L min−1

sample gas flow 1.19 L min−1

RF power 1280 W
data acquisition

resolution isotopes
low (LR) 88Sr, 111Cd, 137Ba, 208Pb, 238U

medium
(MR)

24 Mg, 27Al, 44Ca, 51V, 53Cr, 55 Mn, 57Fe, 59Co, 62Ni,
65Cu, 66Zn

high (HR) 39K, 78Se,

mass window 20% for LR; 150% for MR; 200% for HR
points per peak 50 for LR; 20 for MR and HR
scan type E-scan
integration time 10 ms
passes and runs 3 and 2

Table 2. Physical and Chemical Characteristics of Soil (0−15
cm Depth) from the Field Experiment at Stoneville, MS, in
2011

soil characteristics
no

glyphosate glyphosate t test, P ≥

pH (water) 6.54 6.57 0.70
organic matter, % 0.79 0.83 0.11
cation exchange capacity, meq/100 g 9.5 9.3 0.43
P (kg/ha) 200.2 212.1 0.14
K (kg/ha) 319.7 321.4 0.93
Mg (kg/ha) 555.4 551.3 0.83
Ca (kg/ha) 2587 2567 0.74
S (kg/ha) 57.4 56.1 0.39
B (kg/ha) 1.47 1.38 0.58
Zn (kg/ha) 3.5 3.6 0.73
Mn (kg/ha) 41.7 43.7 0.56
Fe (kg/ha) 48.9 51.8 0.28
Cu (kg/ha) 2.25 2.46 0.09
As (ppm) 3.48 3.77 0.05
Al (ppm) 8095 8415 0.48
Ba (ppm) 1.05 1.07 0.61
Cd (ppm) 3.69 3.51 0.24
Co (ppm) 7.22 7.17 0.87
Cr (ppm) 13.11 13.38 0.65
Ni (ppm) 17.7 17.4 0.77
Pb (ppm) 33.5 39.8 0.16
Se (ppm) 0.30 0.28 0.67
Sr (ppm) 0.19 0.21 0.24
V (ppm) 0.0011 0.0011 1
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the papers reporting glyphosate-caused mineral reductions were

not conducted in a greenhouse or growth chamber.16,17 In

general, we found less of all minerals in greenhouse-grown

plants compared to those from the field, suggesting mineral

availability was limited in greenhouse-grown plants.

If there are glyphosate effects on plant mineral content under
some circumstances, understanding the mechanism of the effect
could be useful in understanding how there could be an effect
under some conditions and not others. We are aware of three
potential mechanisms of glyphosate effects on mineral uptake
and translocation in plants. The first is through phytotoxicity. If

Figure 1. Effects of different glyphosate treatments (one treatment at 3 WAP or two treatments at 3 and 6 WAP; all treatments were 0.86 kg ai h−1)
on the metal content of young and old leaves of greenhouse-grown GR soybean plants at three different times after planting. Bars respresent 1 SD.
Differences between any treatment and the paired control mean value at the 95% confidence level, using Fisher’s Protected LSD test, are designated
with an asterisk.
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a compound is herbicidal to a plant, it will eventually affect
most all physiological processes, i.e., secondary effects,
including mineral uptake and translocation. This is exactly
what happens in glyphosate-sensitive plants when treated with
glyphosate,8,39−41 but, because GR crops are about 50-fold less
sensitive to glyphosate than non GR crops,9 any effects on
mineral nutrition in GR plants treated with recommended
levels of glyphosate should be trivial.
The second is through the chelation of metal cations by

glyphosate.3−7 Glyphosate is a relatively weak chelator,5−7

although metal ions present in tank mixes of glyphosate can
reduce the uptake of glyphosate by weeds due to the poor
uptake of chelated glyphosate.42 There are natural products in

plants (e.g., citrate and some amino acids) that are strong metal
ion chelators. Furthermore, strong metal ion chelators like
EDTA are commonly used to enhance the uptake of metal ions
such as Fe and Zn. In general, none of the research on chelating
agent effects on metal uptake would indicate that a weak
chelator such as glyphosate would reduce the uptake of
micronutrient cations from soil, even though glyphosate is
certainly chelating mineral ions both in vitro and in vivo.
Even if glyphosate were a very strong metal ion chelator,

examination of glyphosate levels in glyphosate-treated GS
soybean seeds at maturity43 and mineral levels in soybean
seed44 show that on a molar basis the ratio can be from almost
10,000 times more Mn to about 100,000 times more minerals
such as Mg or Ca. Comparing glyphosate content of leaves of
glyphosate-treated GR soybean9 with the mineral contents of
GR soybean leaves in this article, the ratios are smaller (ca. 300
for Ca, 30 for Fe, 20 for Mn, and only 2 for Cu), but the ratio
of total metal atoms to glyphosate molecules is close to 1000.
Even if a substantial fraction of the minerals in the plant tissue
were unavailable to glyphosate due to chelation with other
compounds, sequestration, or other means, the ratio of mineral

Figure 2. Effects of different glyphosate treatments (one treatment at
3 WAP or two treatments at 3 and 6 WAP; all treatments were 0.86 kg
ai h−1) on the metal content of mature seeds from greenhouse-grown
GR soybean plants. Bars respresent 1 SE. Differences between any
treatment and the paired control mean value at the 95% confidence
level, using Fisher’s Protected LSD test, are designated with an
asterisk.

Figure 3. Effects of two different glyphosate treatments (0.86 kg ai h−1

at both 3 and 6 WAP) on the metal contents of young and old leaves
of field-grown GR soybean plants at two different times after planting.
Bars respresent 1 SD. Differences between any of the paired mean
values at the 95% confidence level, using Student’s t-test, are
designated with an asterisk.
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cations to glyphosate anions would still be large. These sizable
ratios do not support the view that the chelator properties of
glyphosate would interfere substantially with plant mineral
nutrition.
Some rhizosphere microbes, particularly arbuscular mycor-

rhizal fungi, assist plants in taking up minerals.45,46 Many
microbes, particularly fungi, are sensitive to glyphosate.47 Some
of the glyphosate from foliar applications translocates to roots,
where a portion of it is exuded into the rhizosphere.48−53 This

glyphosate exuded into the rhizosphere could adversely affect
microbes involved in mineral nutrition. However, several
studies have found no effect of glyphosate on mycor-
rhizae,54−56 although other studies have reported effects on
other rhizosphere microbes.57 Thus, there are good rationales
for why none of these mechanisms would operate to reduce
mineral uptake and/or translocation in GR crops.
In summary, no effects of recommended doses of glyphosate

on 14 metals were found in leaves or seeds of greenhouse- or
field-grown GR soybean plants. Our results support the
findings of others that recommended rates of glyphosate do
not affect the mineral nutrition of GR soybeans.
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